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Section 1

INTRODUCTION

This report presents the results of an experimental investigation of the con-
trolled and uncontrolled dynamical behavior of a rotating or artificial-gravity
space station including flexible-body effects. A dynamically scaled model
was supported by a spherical air bearing which provided a nearly moment-
free environment, Reaction jet systems were provided for spin-up and spin-
down and for damping of wobble motion, Two single-gimbal gyros were
arranged as a control-moment gyro wobble damping system, Remotely con-
trollable movable masses were provided to simulate mass-shift disturbances
such as arise from crew motions. An active mass-balance wobble damping
system which acted to minimize the wobble motions induced by crew motions
was also installed, Flexible-body effects were provided by a pair of inertia
augmentation booms. Inertia augmentation booms are contemplated for use
on rotating space stations to cause the spin axis moment of inertia to be the
largest of the three moments of inertia as is necessary to assure gyroscopic
stability, Test runs were made with each of the control systems with the
booms locked (rigid body) and unlocked (flexible body).
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Section 2
DESCRIPTION OF SIMULATION SYSTEM

Figure 2-1 shows the general arrangement of the flexible spinning vehicle
simulation model, Disk-shaped weights mounted on threaded rods visible at
the right end of the model (a similar set is at the left end) provide means for
adjustment of the static and dynamic (principal axis alignment) balance, The
pedestal of the air bearing support is visible beneath the model, The model
is floated on a film of air beneath a 0, 254m (10 in. ) diameter beryllium
sphere, One of the two inertia augmentation booms may be seen protruding
from an opening in the front side of the model. Figure 2-2 shows the booms
vibrating, The gas supply (nitrogen) for the reaction jet system (RCS) is
stored in two gas bottles symmetrically located on the centerline of the
model and ball to preserve the static balance as gas is used. To the right of
the boom arm on the front of the model are the pressure gages and pressure
regulator of the RCS. The jets are visible on brackets at the right end of the

model, a similar set (not visible) is located at the left end.

The square box on top of the model near the left end provides mounting for
the two control moment gyros (CMG's) of the CMG wobble damping system,
The assembly of electronic circuit cards of the control system is in the box
on the top of the model toward the right end, To the right of this are mounted
the solenoid valves of the RCS .

The disturbance mass system is composed of two masses on vertical guide
rods located at diagonally opposite corners of the model. The two masses
are connected by a cable which is wrapped around and fastened to the pulley
of a dc servomotor, On command from a potentiometer on the control panel,
the servomotor will rotate to the commanded angle causing the two masses
to move equally and in opposite directions generating a product of inertia

disturbance. The active mass balance wobble damper system is also

Précéﬁin{paﬁe_ _hla_nk " 3
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Figure 2-1. Flexible Vehicle Simulator Model
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Figure 2-2. Boom Mechanism




composed of two vertically guided masses connected by a cable and moved
by a servomotor. The active mass balance system position is commanded
to be proportional to the sensed angular velocity about the long (Y) axis of
the model and thus acts to minimize the product of inertia disturbance. To
the right of the pressﬁre regulator in Figure 2-1 is a vertical square guide
for one of the two disturbance masses. A similar guide rod and mass may
be seen near the left end of the model and is one of the two masses of the
active mass balance system., Figure 2-3 is a close-up view of one of the
two active mass balance wobble damper weights and its guide rod. The
weights have ball bushings to minimize friction., Above the rod is the servo-
drive assembly of the disturbance mass system. A similar drive system,
not visible but directly behind on the opposite side of the model, drives the

active mass balance system,

Figure 2-4 is a close-up of the body axis angular velocity sensor assembly,
composed of three orthogonally mounted rate gyros and located on the rear

side of the model.

Figure 2-5 is an overall view of the inertia augmentation boom assembly
prior to mounting in the model. The positions of the tip masses can be
changed to provide different moments of inertia, Figure 2-6 is a close-up of
the mechanism. The band at the top constrains the booms to vibrate in the
antisymmetric mode. The springs at the bottom can be adjusted to obtain
various boom vibration frequencies. A potentiometer on one pivot provides

a readout of the boom angle,

The signal and power-wire follow-up servo is shown in Figure 2-1. Immedi-
ately below the junction box attached to the ceiling of the insulated room in
which the model is located is the follow-up servomotor which drives the
attached slip ring assembly in synchronism with the spin of the table. The
follow-up servosystem functions in a rate command mode with the rate com-
mand updated once per revolution based on a comparison of the time differ-
ence with which two light beams are broken. The upper light beam is in the

servomotor housing and is broken once per revolution by a vane attached to
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Figure 2-3. Close-up of Mass Balance Wobble Damper Weight
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Figure 2-5. Inertia Augmentation Boom Assembly
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the motor-shaft, and is sensed by a silicon photosensor. The other light

beam is interrupted once per revolution by a vane attached to the bottom of
the table,

Figure 2-7 shows the coordinate system used throughout this report. The
model body axes, X, Y, and Z, are related to inertial axes, XI’ YI’ and ZI’

by the Euler angles, [31, (32, and p3. Equation (2-1) gives the transformation
from body axis rates, Wer Wyrs and Wers to Euler angle rates, Bl’ 62’ and [33.
The rate signals from the body axis rate sensor assembly are fed to an analog
computer which performs the transformation to Euler angle rates and sub- |

sequent integration to yield the Euler angles:

FULER ANGLE TRANSFORMA TION

.1 [ce Sp 17 ]
; CPy  SPy o1l
1 cB, ch, X
Ba| = |SBs CBjy Olley | | (2-1)
; cpy 5B, SByCE; ||
B Ik
CR71
Z
B, ﬂ1 Z
4
Y
B,
X| 52 Yl
p3
X

Figure 2-7. Model Coordinate System
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2.1 FLEXIBLE BOOMS

The equations of motion of the spinning vehicle with flexible booms are
derived in Appendix A (Equations A-39, A-41 and A-42). It is also shown in
the appendix that the hinged booms have the same dynamical behavior (natural
frequency and varia’c-ion of frequency with spin angular velocity) as tip
masses supported by cantilever beam structural members. The equations
can be diagrammed as shown in Figure 2-8. At the frequency range of
interest, the nutation frequency squared is approximately YZ = (.01 radz/
secz, much less than the spinning boom natural squaredwé =2.8 radz/secz;
therefore, Figure 2-8 can be approximated by Figure 2-9 which in turn can
be manipulated into Figure 2-10. The spinning vehicle with flexible booms
can therefore be approximated by a spinning rigid vehicle with IZ and IY
replaced by I'Z and I%{ wherein the boom inertia contribution is reduced

by a factor depending on boom flexibility and spin speed. Based on the
approximation of Figure 2-10, the nutation frequency of the flexible vehicle

is given by

1/2

(I, - I,) (I, - I)
y = |2 L;( I,Z Y Q (2-2)
X Y

Figure 2-10 is convenient for investigating the controlled characteristics of

the system.

It will be noted in Figure 2-1 that the centerline of the booms is displaced
from the center of the air bearing ball along the Y axis a distance RY which
differs from the assumptions of Appendix A. It may be shown that the
model still behaves according to the equations of motion of Appendix A pro-

vided that ZmR,i. is added to I_X and I the moments of inertia of the rigid

Z’
center body. This has been done in the reported results.

12
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Figure 2-8. Flexible Boom Equation Diagram
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Figure 2-9. Approximate Equation Diagram for Flexible Boom
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Figure 2-10. Manipulation of Flexible Boom Equations

2.2 CMG WOBBLE DAMPING

The CMG wobble damper on the simulation model is composed of two single-
gimbal CMG (SGCMG) which have their gimbal axes parallel with the table
spin axis (Figure 2-11). The gimbals are driven so that the gimbal angle of

one CMG is the negative of the gimbal angle of the other CMG.

The torques acting on the transverse axes due to the CMG's are

_ A - ' 2-3
TX = Hl 0’1 Sal wZ H1 Saf1 + HZ afz Saz +wZ HZ Saz ( )
= ; - N - 2—4
TY H1 Ct'l Cal +wZ Hl Cal H2 (12 Ca/2 wZ I—I2 Caz ( )
:. - — 2—5
TZ wX H1 Sa/1 wY H1 Cal wx I—I2 Saz + wY H2 Caf2 ( )
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Figure 2-11. Twin CMG Wobble Damper

A block diagram of the wobble-damping control system is shown in Fig-

ure 2-12 where w, = Q = constant. The gimbal angle control law is

= - - - 2-6
(.'J.lc aZc KwY ( )

A tracking loop (KTR is the tracking loop gain) is included to maintain the

rela‘tion‘ship
a, = -a, = a (2-7)

Substituting this relationship into the torque equations and letting H1 = H2
= H yields '

= - 2-8
TX 2HQS o ( )
= A 2-
TY 2HaSe (2-9)
= - 2-10
TZ ZHwXSar _ ( )
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If we assume small gimbal angles (Ca =1, Sa = ), the system equations

can be linearized and conventional control analyses can be applied.

Figure 2-13 is a simplified block diagram of the wobble damper. The gimbal
angle control loop will have a much higher bandwidth than the rest of the

system; therefore, if we assume thato = as the simplified system equations

are
Iy by + (I, - Iy)Qwy, + 2HQa = 0 | (2-11)
IYwY+(IX-IZ)Q Wy - 2Ho = 0 (2-12)
The characteristic equation is )
I, - 1), - I )9° |
s? + 2HKa(- + ) s+ L E— . o (2-13)
' Y X XY
CR71
2H Q K
- S "
IxS T" X
(Iz=1y) Q2
(Ix=1z)
( KN e o
- IyS Y
+
2HKS

Figure 2-13. Simplified CMG Wobble Damper
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The damping factor is

¢ = K$Q<Ii+Tl__) (2-14)
Y X
and nutation frequency is
1/2
(I, - Iy) (I, - Iy)

- o Z Y Z LX (2-15)

Y T, 1

XY

The influence of the flexible booms may be determined by using the reduced
moments of inertia I'Z and IlY in the above equations. Since both Y and IY
are reduced from the rigid body values in this case, increased damping is

to be expected with flexible booms.

2.3 ACTIVE MASS BALANCE WOBBLE DAMPING
CONTROL SYSTEM

The theory and computed results of operation of an active mass-balance
control system are fully presented in Reference 1” The principle of opera-
tion is to move a mass parallel to the Z axis an amount proportional to wy
thus generating an IXZ(t) product of inertia which acts to damp the wobble
motion including that due to mass shifts. The main equation of Reference 1

is reproduced here for completeness,

. Cm |r
w +M92w +(a+6a)b92c'o = -bQT —= (2-16)

Y IY Y Y I'X

where m is the control mass, ry and ry are the position components of the

control mass guides, and C is the gain constant in the commanded position

of the control mass

“*Reference 1, D. W. Childs, A Movable-Mass Attitude-Stabilization System
for Artificial-g Space Stations. Journal of Spacecraft and Rockets, Vol. 8,
No. 8, August 1971,

D 18



a = —Z——IX—Y— = B of this report (2-17)
1. -
b = ZI—LX— = -A of this report (2-18)
Y
A = (ab)l/z (2-19)
IYZ(O) is the product of inertia disturbance arising from a mass shift such

as crew motion. The term 6a which increases the wobble natural frequency

is not significant. The ratio of effective damping to critical damping is given

by

CrnC !er Q

L =
ZIY)\

(2-20)

The influence of flexible booms may be examined by use of the reduced values
of IZ and IY and since they are smaller than for a rigid body, indicate that
increased damping would be obtained.

The model wobble damping system is composed of two movable masses
located at diagonally opposite corners of the model. The two masses are
connected by a cable and operated by a dc torquemotor so that they move in
equal and opposite directions thus preserving the model static balance. It
may be shown that the attitude equations of motion are identical with those
of Reference 1 provided that the control mass, m , is understood to include

both model masses.

2.4 REACTION JET SYSTEM

The reaction jet system located in the air bearing table has two functions:
A. To spin up and spin down the table (about Z axis).
B. To provide wobble damping during spinup and spindown (about

X axis).

19



To accomplish these functions a two-axis rejection jet system with four pairs
of nozzles is used. Functionally, the jets on the Z axis operate independently

from the jets on the X axis.

2.4.1 Spin-up System

The spin-up system is shown in Figure 2-14. Upon command, the gas jets
are turned on and are left on until the desired spin rate is reached. During
the course of a run, air drag on the table acts against the table spin. When
the rate decreases below the commanded rate, the jets are activated to keep
the spin rate within a given tolerance of the nominal. This is accomplished
by putting a dead zone in the reaction jets as shown in the figure. To spin

down the table, the command, W s is set equal to zero.

2.4.2 Reaction-Jet Wobble Damping

During spin-up or spin-down, it is not convenient to use the CMG's for
wobble damping. The X-axis reaction jet system is used for wobble damp-

ing during these times. This system can also be manually commanded by

CR71
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Figure 2-14. Spin-Up System
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means of a switch on the control console to introduce initial conditions or

disturbances about the X axis.
A block diagram of the system is shown in Figure 2-15.

2.4.3 Reaction Jet Control System Hardware

The system, as shown schematically in Figure 2-16, consists of four pairs
of cold gas (nitrogen) reaction jets. The reaction jets are driven by two
solenoid valves which are controlled by the spinup/wobble-control

logic.

The nitrogen is carried in two symmetrically located tanks (to reduce any cg
shift due to mass expulsion), The volume of the tanks is approximately
400 in.3. This sizing of the tanks allows a number of simulation runs to be

conducted before recharging is required.

Each of the jets is 0. 66 mm (0. 026 in. ) in diameter and develops a thrust of
0.059 N (0.013 1b) when the supply pressure is 17, 24 N/cmz (25 psi). The

CR71
1
IyS
wy - 1y) . wp liz-1y)
JETS
|
1 w,
. | g x
SHAPING T L IS
1
RATE
GYRO

Figure 2-15. Reaction Jet Wobble Damper
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Figure 2-16. Schematic Diagram — Reaction Jet System for Spin-Up and Wobble Control

distance between jets is 2. 286 m (6. 94 ft). The pair of on-jets develop a
moment of 0. 124 N m (0. 091 ft/lb) at this pressure. The spin up jets accel-
erate the model to a speed of 0. 63 rad/sec (6 rpm) in approximately 20 min,

The wobble damper dead zone was set at 0, 00524 rad/sec (0. 3 deg/sec).
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Section 3

SIMULATION RESULTS

Two model configurations with slightly different parameters were used in
the simulation runs. The experimentally determined parameters for the

two configurations were the following:

Center Body

Configuration 1 ‘ Configuration 2
2 2 2 2
IX 148.46 kg m"~ (111.16 slug ft"™) 148.16 kg m"™ (111.16 slug ft™)
2 2 2 2
IY 22.70 kg m"~ ( 17.0 slug ft") 22.90 kgm"™ ( 17.15 slug ft")
2 2 2 2
IZ 144.10 kg m~ (107.90 slug ft) 144,20 kg m"~ (107.97 slug ft )
2 2 2 2
I-1, 4.354 kg m"~ ( 3.26 slug ft7) 4.260 kg m~ ( 3.19 slug ft)

For both configurations the boom parameters were

21, = 5. 107 Kg m? (3. 824 slug it%)
wg = 1.636 rad/sec (0.260 cps)
d+4
—— = 1.2115
R = 0.9929
Ros® = 2.658 + 1.2115 Q°

The rigid body parameters are obtained by adding ZIB to the IZ and IY

values for the center body.
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3.1 RIGID BODY SPIN-UP AND SPIN- DOWN

Large angular excursions can occur during the low spin portion of a run
since the system does not have a nonspinning attitude control system. To
prevent excessive attitude excursions due to the spin-up jet misalignment,
the wobble-damping jets, which provide torques about the X axis, were oper-
ated manually by means of a toggle switch on the control console to minimize
the attitude excursions until spin speed is built up sufficiently to allow con-

trol by the RCS wobble damping system.

In this run the model was spun up and down with the booms locked (rigid
body). At time zero, the spin-up jets were turned on and attitude was con-

trolled manually as described above.

At 568 sec when the speed was 0.489 rad/sec (28 deg/sec 4.67 rpm), con-
trol was turned over to the RCS wobble damper which allowed Wy to move to
the edge of the RCS dead zone 0.0052 rad/sec (0.3 deg/sec) and remain there.
At 926 sec, the speed had reached the set speed of 0.62 rad/sec (35.6 deg/
sec). At 1,100 sec the RCS wobble damper was turned off and the spin-up
jets allowed to maintain a constant speed while the steady-state nutation
motion was observed. The nutation period observed of 68.4 sec is in excel-
lent agreement with that calculated from the experimentally determined rigid-
body parameters (68,0 sec). The offset from zero on W indicates a
significant IXZ dynamic imbalance on this run. At 1,428 sec, the spin-up
jets were turned off and the model allowed to spin down under air resistance.
At 1,453 sec, the RCS wobble damper was turned on again and damped the
oscillation to the edge of its dead zone in about half a cycle (43 sec). The
length of this run precludes inclusion in this report; however, Figure 3-1
shows the constant speed and RCS wobble damping portion of this run from
time 1,113 to 1,513 sec.

Figure 3-1 has w, as the spin rate on channel 1, the scale is 0. 035 rad/sec
(2 deg/sec) per division, and the time scale is 1 sec per division. W and Wy
are on channels 2 and 3, with scales of 0,0017 rad/sec (0.1 deg/sec) per
division. Channels 4—5 and 6 are not in use on this run; however, Channél 4

is the boom channel. The boom is locked in place (rigid body). The signals

24
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observed are due to electrical noise coupling from the RCS jet firing.
Channel 7 indicates the operation of the wobble damper jets which produces
torques about the X axis. Channel 8 indicates the firings of the spin-up jets.
Figure 3-2 shows the Euler angles during the corresponding time period.
Wy Wy and W are repeated on channels 1, 2, and 3 to provide a common
reference. The scales are 0.0035 rad/sec (0.2 deg/sec) per division on 1
and 2 and 0. 035 rad/sec (2 deg/sec) per division on channel 3., Channels 4,

5 and 6 present the Euler angles with scales of 0.035 rad (2 deg) per division.

The Euler angles are generated by an analog computer and the zero reference

is the position of the spin axis when the computer is switched into operation.

3.2 FLEXIBLE VEHICLE

For this run the flexible booms were unlocked. The spin-up thrustors were
turned on and the model was spun up with manual attitude control using the

X axis RCS thrustors to limit attitude excursions during the low-speed portion
of spin-up (Figure 3-3) Wy and the boom angle steadily diverged from zero.
Attitude control was turned over to the RCS wobble damper which remained
steadily on. At a spin speed of 0.59 rad/sec (34 deg/sec) an attempt to return
the attitude of the spin axis more nearly to the vertical caused the model to
hit the angle stops which limit motion about the X and Y axes to 15 degrees.
After some large perturbations, the model recovered from this and exhibited
the motion shown., It was evident that a significant negative product of inertia
disturbance was present. The active and disturbance masses were commanded
to move approximately 5 cm (2in. ) from null position in a direction to relieve
the product of inertia disturbance. The RCS wobble damper and the spin-up
thrustors were turned on and the spin was increased to 0.587 rad/s (33.6

deg/s). The divergence of w,, and boom angle observed in the earlier portion

of the run reappeared but mch(:h less strongly. In this run, the nutation period
is approximately the same as the rigid body nutation period (75 sec). This
surprising result is believed to be due to friction in the boom pivots., It will
be noted that the boom frequently appears to move in jumps of about one

division (0.05 deg) as might be caused by slip-stick friction.

Additional runs were made with the model being spun-up to various speeds

and released. This is referred to as caged spin-up. The model was then
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allowed to coast so that the free motion could be observed unperturbed by
the RCS system. Figure 3-4 shows the result of a spin-up and release at a
spin of 0.64 rad/sec (36.8 deg/sec). wy and the boom angle immediately
diverged indicating that the stability boundary has been approached in good
agreement with the calculated value. (Stability factor = 1.0 at @ = 0. 69 rad/
sec, 39.4 deg/sec.)

Figure 3-5 shows the result of a spin-up and release at 0.59 rad/sec
(34 deg/sec). A significant boom oscillation was excited, indicating opera-
tion not far from the stability boundary. Again the nutation period is close

to that of the rigid body. The jerky movement of the booms is again evident.

Figure 3-6 is the record from a spin-up and release at 0.51 rad/sec (29.1
deg/sec). A relatively small boom amplitude is excited indicating operation

relatively far from the stability boundary.

3.3 ACTIVE MASS BALANCE WOBBLE DAMPER

Figure 3-7 gives simulation results obtained with the active mass balance
system with the booms locked (rigid body). The model was spun up to 0.626
rad/sec (36 deg/sec) and released and the free motion observed for about one
cycle. The W offset from zero indicated a negative IXZ product of inertia.
The wobble damper damped the oscillation in about one cycle. The disturbance
mass was then commanded to move 0.6 inch in a direction to relieve the pro-
duct of inertia, again the active mass system damped the motion in one cycle,
although the spin had decreased considerably. The broad wy trace is due to
a low-amplitude, high-frequency oscillation of the active masses. It does not
show in the active mass trace because the signal has been put through a low-
pass filter with a break frequency of 20 rad/sec. The locked boom structural
frequency appeared to be participating in this and is possibly related to the
natural frequency of the cable connecting the two masses. It is possible that

additional low-pass filtering on the input signal Wy could eliminate the low-

amplitude oscillation.
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3.4 ACTIVE MASS BALANCE WOBBLE DAMPER WITH
FLEXIBLE BOOMS

Figure 3-8 presents simulation results obtained with the active mass balance
system when the booms are free. The model was spun up to 0.57 rad/sec

(33 deg/sec) and released. In a few minutes the RCS wobble damper and
spin-up jets were turned off and the active mass system turned on. It damped
the initial motion in about one and a half cycles. The disturbance mass sys-
tem was then commanded to move 2 inches. The oscillation was again
damped in one and a half cycles. The limit cycle oscillation of the active
masses was excited by the operation of the disturbance mass system causing
a broadening of the wy trace. It will be noted that much longer nutation
periods (120 sec) occur in this record. This suggests that the limit cycle

acts as a dither to the booms relievihg the stiction in the pivots,

3.5 CMG WOBBLE DAMPER

Figure 3-9 shows simulation results obtained with the CMG wobble damper with
the booms locked (rigid body) for configuration 2. The action is at an average
spin rate of about 0,558 rad/sec (32 deg/sec). The model was spun-up with
the Z RCS and then allowed to coast and the amplitude of the nutation angular
velocities observed. The CMG wobble damper was then turned on and damped
the oscillation in approximately two cycles. Channels 5 and é record sine ay
and the tracking error with scales of 0.01 radians per division. The broad
traces are due to a relatively high-frequency, low-amplitude limit cycle in

the CMG gimbal loops, which has a negligible effect on the performance of

the system.

3.6 CMG WOBBLE DAMPER WITH FLEXIBLE BOOMS

Figures 3-10 and 3-11 present configuration 2 simulation results obtained
with the CMG wobble damper and flexible booms. The initial oscillations
were observed while the model was coasting, The CMG controller was
switched on when the spin rate was 0,471 rad/sec (27 deg/sec). The
oscillation was damped in about one-fourth of a cycle. This result is in
agreement with theoretical predictions that an increased damping ratio is to

be expected with flexible booms.
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Section 4

DISCUSSION OF RESULTS

The system with flexible booms tended to exhibit the rigid-body nutation
period. A number of runs were .rnade’ with configuration 2 at various spin
speeds, and the nutation periods were measured to investigate the. phenomenon
in greater detail. The results are presented in Figure.-’-l—l. The upper
curve is the flexible-body nutation period and the lower curve is the rigid-
body nutation period. The crosses are experimentally determined points.

It will be noted that the observed points geherally fall between the two
curves. At 0.419 rad/sec (24 deg/sec) the experimentally observed points
lie close to the rigid-body curve. The 4po'1n‘ts deverge from the rigid-body
curve as the spin rate is increased. Near the stability boundary, the points ’
jump up closer to the flexible body curve. The dashed lines indicate the
~general trend. It is believed that the observed behavior ié caused by slip-
stick friction in the boom pivot bearings. The simulation run records show
that the boom angle tends to move in small pumps as is typical of slip-stick
friction. At the lower spin-rates where only small boom amplitudes occur,
the system tends to behave as a rigid body. At the higher spin-rates where
large boom amplitudes tend to' occur, the system behaves more nearly

according to flexible-body predictions.

In view of the foregoing, it is somewhat difficult to assess the influence of
the flexible booms on the active and disturbance mass systems. The chara-
teristics of the active mass balance system are C = lém/rad/sec (53 ft/
rad/sec), m_ = 0.777 kg (1.72 1b) each, ry = 0.254 m (0. 833 ft)v,

XN = 0.148. For the conditions (configuration 1) of the rigid active mass
balance run (Figure 3-7),2 = 0.628 'rad/lsec (36 deg/sec), yield § = 0;5,'
according to Equation (2-20); and this appears to agree with the experimental
result. Computed on a rigid-body basis we would expect & = 0.37 to-be
observed in the_ flexible boom run (Figure 3-8) since the spin speed is l(ower,

0.489 rad/sec (28 deg/sec). Actually the damping appears nearly the same
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in both runs. If we compute the damping for the flexible boom case by using
the reduced inertia we obtain £ = 0.55, This indicates that on this run,

the flexible effects are acting accbrding to theory. The nutation period
observed on this record, 120 sec, is clo.ser to the theoretical flexible boom
value of 128 sec and distant from the rigid body value of 87 sec. A somewhat
similar result is obtained with the CMG wobble damper (conf1gurat1on 2)

The angular momentum of the two CMG's is 0.922 kg m /sec (0.68 slug ft /
sec), and the input gain is 6 (dimensionless). On a rigid body basis, Equation
(2-14), these parameters would produce a damping ratio, L = 0.7, which is
about the value obtained in the simuiation run (Figure 3-9).. The ﬂex1b1e boom
CMG run yields more nearly critical damping (Figure 3-10). If the CMG
damping for the ﬂexibl’e run is computed from the reduced inertias (Fig'ﬁre
2-9), é. damping ratio, { = 0.9, is obtained in reasonable agréement With

the observed value.

Figures 4-2 through 4-8 present the results of a digital computer s1mu1at10n
usmg the data of configuration 1 and a boom viscous damping. ratio & = 0. 061'
for the flexible booms at a spin rate of 0.628 rad/sec (36 deg/sec). This
run exhibits the theoretical nutation period of 122 sec. Figures 4;9"thfougﬁ,
4_15 present digital simulation results for configuration 1 with-RCS Wobble
damping. The wobble damping dead zone was 0.00524 rad/sec (0.3 deg/sec)
and the pair of on jets developed a moment of 0. 149 Nm (0. 11 ft 1b)

Figures 4-16 through 4-23 give digital simulation results for co_nf1guration 2
with the CMG. wobble damper. The gimbal angle command was afc»’ = "IOwX.l
The integral of the gimbal angle with a time constant of 400 sec was sub-
tracted from the gimbal angle command to cause the gimbal é.ngl'e to slowly

return to its nominal position.
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Section 5

CONCLUSIONS

The rigid body behavior of the simulation system was in good agreement with
theoretical expectations. The flexible boom system results were in good
agreement with the predicted stability boundary and in reasonable agree-
ment as to predicted nutation frequency when operating near the stability
boundary. The RCS wobble damper functioned very well under all conditions
simulated. The spin-up RCS functioned satisfactorily but was not as .Well
aligned as is desirable. The disturbance mass and active mass systems
performed excellently. The active mass system showed itself as a simple
and effective wobble damper under both rigid and flexible body conditions,
Simulation runs with the CMB wobble da'mper exhibited the increased damping
ratio predicted for operation with the flexible booms as 'did the active mass

wobble damper.

On the whole the air-bearing simulation model appéars to be a very effective
tool for the investigation of the interaction of control systems with spinning
vehicles with flexible booms. The pressure of time and funds did not allow
as much effort to be devoted to precise adjustment of the model as is désir-‘

able to exploit its full potential as a simulation tool.

Movement of center of gravity with use of RCS gas upset the static balance
and resulted in the model being operated in a less well-balanced condition
than would otherwise be necessary. The small misalignments in the spin-up
thrustors tended to obscure the phenomena under observation. In addition
these extraneous moments often, but not consistently, appear similar exper-
imentally to product of inertia disturbances and interfere with precisely

dynamically balancing the model.

 Preceding page blank | *



It is recommended that additional effort be devoted to
A. Improving the model static and dynamic balance, a straightforward
but time-consuming task,
B. Change the boom pivot bearings to flexural pivots which would then
exhibit structural rather than friction damping.
C. Devise means to eliminate the small amplitude high-frequency

oscillation of the active mass system.
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Appendix A
DERIVATION OF EQUATIONS OF MOTION

Figure A-1 illustrates the configuration under consideration. A rigid central
body of mass M and principal moments of inertia Ix’ Iy’ IZ is spinning with
angular velocities s Oy and w‘z = Q 4 w, where €2 is much greater than W

Wy and w, . Stability augmentation booms with tip masses m, and m, and of
length ¢ are hinged at the points of connection to the central body a distance d
from its center of gravity., The hinges restrict motion of the booms to the
x-z plane, such motion being opposed by a torsion spring of constant KH at
the hinge so that in the unperturbed state the booms are aligned with the x
principal axis of the center body. The x,vy,z axes form an orthogonal coord-
inate system with axes parallel to the principal axis of the center body and
origin at the center of gravity of the system, The small displacements q; and

a, of the tip masses are thus restricted to be parallel to the z axis. (It may

CR71

Figure A-1. Rotating Body with Flexible Stability Augmentation Booms
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be shown that in-plane motions produce only second-order attitude effects.)
The center body small displacement from equilibrium is Q. The displace-

ments of the tip masses relative to the center body are 9. and a5 ,.-

Although the equations of motion are developed for hinged booms, it will be
subsequently shown that with minor modifications the same equations apply to

tip masses supported by elastic cantilever beams,
For each of the three masses, one can write
m, a, = F, (A-1)

Where 'é".l is the inertial acceleration of m, and fi is the sum of the internal
connection forces and external forces. In terms of quantities defined in the
rotating coordinate system xyz,
a. = A+ OXT. + 20XT. t oXoxr. + 1., (A-2)
i o i i i i
where AO is the acceleration of the origin o (system CG) expressed in xyz
components, w is the inertial angular velocity vector of the center body in the

xyz system, and T, is the position vector of body i relative to o, The com-

ponents of the position vectors of the bodies are;

body my, 1,

T, =|d+¢ o qll
m,, r, = -(d + 1), o, qZ]

(A-3)

M, r=1Q., Qy, Q,

Inserting Equation (A-3) in Equation (A-2) and neglecting second-order terms
gives the component equations, where the subscript e denotes external forces,

for m

1

- 2 _
mpa, = mlex - ml(d + )0 = Fix + Fiex (A-4)
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m, 1y = mley + ml(d + ﬁ)cbz
M2 T mlez
- Flz + Flez
for m,
m.,a :.mA + m (d+,€)QZ
2 ax 2" ox 2
mZaZy = mZAoy - mz(d + ,Q)(,:_)Z
my,a, = mZAoz + mz(d + ﬁ)(})y-— m
- F2z * F2ez
for M
M-QX+MAOX = _le_F2x+F
MQY+MAoy = - Fly_ F2y+F
MQZ * MAoz - _.Flz - FZZ tE
If we let m, = m,

obtain for the x direction,

MQX + (M

+ 2m) A = ZF

oxX ex

- FZx

= F

2y

2

Mez

* FZex

+F ey

(d + HQw_ +m
X

292

(A-6)

(A-7)

(A-8)

(A-9)

(A-10)

(A-ll)"

(A-iZ)

= m and add the corresponding component equations we

(A-13)

Since M + 2m is the total mass of the system and AOX is the x component of

acceleration of the center of gravity, the second term of Equation (A-13) is

equal to the right-hand side and therefore Q = 0.

Similarly for the y direction, we obtain
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In the z direction, the result is

MQZ + mq + mq, + (M + 2m) Aoz = ZFeZ (A-14)

Reasoning as above, Equation (A-14) becomes
MQZ + mq, + mq, = 0 (A-15)

Equation (A-15) implies

M
Qta, = -5 Q (A-16)

z

In the following, it will be assumed that no external forces are present (i.e.,

—_— -

FMe’ Fle’ er, = 0), so that Aoz = 0. The internal connection forces

can be expressed in terms of the small deflections of the boom relative to the
center body. Figure A-2 illustrates the forces acting on a mass and the cor-

responding reaction forces on the boom.

CR71

Fiz

Md+ Q) a?

Figure A-2. Forces Acting on Mass and Boom
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Summing moments about the hinge point and solving for F'._ we obtain,

1z

K q

F,, = -[—E+m(d+£)92]——1r (A-17)
4 ? b

]
and similarly
K q
B H 2] 2r :
F, = '[z +m(d + ) J«“_ (A-18)

From the geometry we have, letting QZ = Q,

0
—
!

q1r+Q

a, + 0. (A-19)

r

Ko
oY
1

Inserting Equations (A-17) and (A-18) in Equation (A-12) and making use of
Equations (A-16) and (A-19) yields

' K
P M+ 2m (d + 1) .2 H _
QZ+< M >[m 7 Q +ﬂ—2:| Q = 0. (A-20)
Now
1
B {(d+£) 2 KH]Z
w = Q7+
S { 2
m/

is the spinning vibration frequency of the booms if they were attached to a

rigid spinning shaft, thus Equation (A-20) can be written,
- M+ 2m 2 _

Equation (A-21) indicates that the system can perform vibrations parallel to

the z axis with m and m, moving in the same phase and opposite in phase to

M with frequency given by

1
N M+ 2m \=
w = ws<——M >2 . (A-22)
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The absence of attitude variables in Equation {A-21) indicates that this trans-

lational vibration is uncoupled with the attitude motion of the system.

To arrive at the equations of angular motion of the system, we can equate the
rate of change of angular momentum H to the torque T acting for each of the

bodies.

H = m. r.xa. and 7, = T1.xF, (A-23)
i i i it

The component equations are, for m

1
Hlx = 0 = Tix . (A-24)
. 2 2
Hly = -m(d + ) q - m(d + ﬁ)q1 +m(d + )76
- m(d + [)Q(_A_)X:le (A-25)
K g
T.o= -m(d+ 0%0%q, + (d+ o] L mldF D G20 (A-26)
ly 1 £2 0 1r
or
B 2 2 2
le = m((d + 1) (ws -Q )qlr - Q Q] (A-27)
o= md+ 0% = (A-28)
1z ~ v T Mg )
Similarly for mass 2,
HZx = 0 = TZX (A-29)
H, = m(d+0)0%., + m(d + 04, + mid + 0%
2y 2 2 ' y
d + 0%, =
-m )" Quw. = TZy (A-30)



_ 2 2 52
TZY = -m(d + E)[(ws - Q >q2r -Q7Q

— 2 .
HZZ = m(d + 20)" &

=T

2z

For the center body, the corresponding 3 equations are the usual Euler

equations for Q > Wy W

lxwx * (Iz - Iy)wa - _Tlx N TZx (A-33)
Iywy + (IX - Iz)wa = - le - TZY = -MC (A-34)
Izmz - -le - TZz (A-35)

where T appears with a negative sign since the connection moments occur in

equal and opposite pairs.

(A-31)

(A-32)

Adding Equations (A-25) and (A-30), the equation of motion for the booms is

obtained

2 , . . ) 2.
m(d + £)Q (qz-q1)+m(d +- .ﬂ)(qz- q1)+am(d+ﬂ) Oy
- 2m(d + E)ZQwX = M_ (A-36)
M = -m(d+ 0> - 2% g, - q. ) (A-37)
c g 92, - 9r

Equation (A-19) shows that (qu - qlr) =g, - dps if we let

q, - q, = 240 (A-38)

Equation (A-36) may be written

2 2

2me(d + 1) 6 + 2m(d + 1) b, + 2mi(d + 2% - 2md + z)Zwa

2

- MC = -2mf(d + ﬁ)(ws - 078 (A-39)
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dividing through by the coefficient of the first term Equation (A-39) can be

written

6roleor Sl _dtlo o (A-40)
s £ vy ¢ X

Inserting the appropriate expressions for 17, Equations (A-33) through (A-35)

become
wax + (IZ - Iy)wa =0 (A-41)
Lo 4+ (L -1 )00 = 2mid +1)° - 020 (A-42)
ywy x Tz %% T S \Wg T B
. 2.
I o = =2m(d + £)" % (A-43)
Z Z

Equations (A-40), (A-42), and (A-43) then are the equations of free motion of
the system. (Equation (A-43) merely indicates that &)z = 0.) It will be noted

that Mc’ the connection moment, occurs on the right side of Equations (A-39)
and (A-42) (with opposite signs)., In order to determine the equation of motion
for a system with cantilever booms, it is necessary to insert the correspond-

ing connection moment expression.

Figure A-3 illustrates a massless uniform beam of length ¢ mounted a
distance d from the spin axis, (i.e., the portion d is rigid) with a concen-

trated mass m mounted at the tip and spinning with angular velocity Q. The

beam is subject to a deflecting force ¥ and a tension P = m(d + P.)QZ.

The basic beam equation is
EI Y" = M) . (A-44)

where EI is the flexural rigidity of the beam,Y'" = dzy/dxz, M(x) is the bending

moment applied at point x (origin taken at d), and Y is the lateral deflection,

The moment is given by
M(x) = F(£-x)-P[Y(D)- Y(x)]. (A-45)
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Figure A-3. Stiffness of a Spinning Boom
Differentiating and combining Equations (A-44) and (A-45) yields,
P ¥
1 . ro-

LR i R i (A-46)
with end conditions .

Y(o) = Y'(o) = O; Y'(&) = O . (A-47)
Let az = P/El. Laplace transforming Equation (A-46) and using the end
conditions at x = 0 gives the transform of the solution as,

"
¥(S) = - . Fz —_ "; (°)2 (A-48)
EIS™(S™ -a7) S5 -a)
The inverse transform of Equation (A-48) is
[N
Y(x) = - —— (% sinhox - x) + YU0) (cosh ax - 1) . (A-49)
Ela® ¢ @ .
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Differentiating Equation (A-49) twice and using the condition that Y''(¢) = 0

enables determination of Y''(o) as

Y'(o) = == tanh af . (A-50)
Inserting Equation (A-50) in Equation (A-49) produces the complete solution

Y(x) = E 3 [ax - sinh ax + tanh of (cosh ax - 1)] . (A-51)
Elo

The tip deflection at x = {is given by

Y =

3 (el - tanh of) = E3 (¢ - L tanh of) . (A-52)
Ela P a

The spring constant is given by

= ) (A-53)

Vibration frequency of spinning cantilever. The spinning frequency W s is

given by

w - B P S d+ g2 L (A-54)
m

I 1
m(f¢ - = tanh «f) (1 - —Jtanh af)

This can be expanded in a series for purposes of comparison with the hinged

boom solution as follows;

Let B = oaf then Equation (A-54) can be written

3
2 EI g
Ys 7 3 <@- tanhg) (A-55)

m/
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Let

3
_ g 1 B- tanhP
t= gTtamnp > 2748 = F ° 53 (A-56)

then using the series expansion for tanh

1 2 2 17 R4 62 .6
g = 3-15P +—3156 -——28356 + ... (A-57)

f can be expanded in a Taylor series in

2

£B) = f(o) + £o)p + B (A-58)
and
L : g (o)
f(o) = . f'(o) = - , etc
8(0) g” (o)

as a result of these operations we obtain

2 1[34

f(py = 3 +§- g~ - 178 +. .. (A-59)
and
2 3EI 6(d+0.2 1 mud+ it
wg T mg3+§ R £l o (A-60)

the nonspinning natural frequency.

. 2
the first term is wg

Accuracy of Approximation
If we use the first two terms of the series as an approximation, the accuracy

can be estimated by a representative numerical example.

Let Q = 0,63 rad/sec, wp = 0.55 rad/sec, m = 189.17 kg (13 slugs),
d =0, ¢=30.48m (100 ft),
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then

1
al = jl.[iﬁi%_ﬁli — 1.98393 (A-61)

N —
5l

0.87817 (A-62)

' 2
o =
s 1 - —TtanhQ/@
d+o .2\t
( Q~)2 = 0.88249 rad/sec

the difference is 0, 00432 rad/sec or 0. 49 percent. The moment exerted on the

central body about the cg is
M, = F(d+1¢ - PY (A-63)

Let 8 = Y/¢ then since

w = K/m = o— = —= (A-65)

w
3
2

and
P = m(d + )2 (A-65)

M = mid+ 9 (ws -0 )8 (A-66)

It will be noted that the expression for M_ in Equation (A-66) is identical to
that in Equations (A-39) and (A-42) for hinged booms so that for equal values
of W the spinning boom frequency the equations of motion are identical,

However, the expressions for w are different functions of the spin rate £2.

For comparison

2 .
W 2 cantilever = (d+8a = w 2 +~(3 (d + 0) 2 (A-6T)
s 1 B 5 ¢
Z(l - -&?tanh O/ﬂ)
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wsz hinged = w.2 + 31152 (A-68)

If d + ¢/¢ hinged = 6/5 (d + £)/{ cantilever as for instance in a dynamic model

correct tracking of w with spin rate will be obtained.
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Appendix B
COMPARISON WITH CANTILEVER BEAM EQUATIONS

Hinged boom vibration frequency with boom arm mass included

Q

QL

L
; < .

d ?

m P=m(d+ Q02

the potential and kinetic energy for a small displacement 6' are

, .
2V = KHOZ + mz(d+g)9292+cs22 92/ x (d + x) dx (B-1)
O
d
B 2 2 ( mB> e | 2
2V = Ky 0% + @ [m+3 (d+0) +——|6 (B-2)
L2 2 2 t 2.2 2 2
ZT:m[(ze) +(d+£)§2]+/ dm[xe +(d+x)$‘2:| (B-3)
(0]
where

c is the mass per unit length of the boom arm and mp = c!l is the total mass

of the boom arm

then
2..
HClt (%) + %: (m+n—3—)B)£6 + lRH + [(m +—H;E)(d+f)
mqd
+ f]ﬂze}e' -0 - (B-4)




whence

2
2 2 d+ ¢ Q
“s T Y tTT R (B-5)
where
m
B {3d +2¢
1 — -
moo=omot T3 [2(d+ﬁ)] (B-6)
and
m
R_ . m + I1_3)/3 . (B—7)
m
where
2 “u
w =
SR
3
The moment applied to the center body about the cg is
2 {
M_ = F(d+1) - PY - co’o / (d +x) x dx
(¢
which can be put in the form
(d + 2)2 ¢ 2 2
— v — 1 -
Mg o= ome WL Ze 0P (B-8)

The object of this discussion is to demonstrate the relationship between the
equations of motion and stability criteria for flexible cantilever booms and
hinged booms on a rotating space station, It was shown in Appendix A that

the angular equations of motion for the configuration under consideration are

Lo, + (13 - IZ)QwZ 0 (B-9)

I

Lo, + (I; - 1,)Qu, = 2 M (B-10)
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2me (d + 0) 8 + 2m (d + 12)2 ‘*.’z + 2m #(d + E)Qze - 2m (d + ﬂ)zﬂwl

- -2M (B-11)
c
where MC is the internal connection moment between the central body and the

two booms, 11’ 12, 13, wys wZ,Q are the principal moments of inertia and
angular velocities of the central body, m is the boom tip mass, and 6 is the
boom angle. It was shown that for massless hinged booms and a massless
cantilever boom MC is given by

. 2 2 2
M, = m(d+ 07 3o (g7 - %) 0 | (B-12)

wg’ = g’ +(‘3—Z“QZ (B-13)
2 By

wB = '—-Z- . (B—14)
m/

2
2 d + ¢ Q ‘
Ws = ( ] ) 1 (B—].S)
(1 e tanh of)
or the approximation
2 2 6 (d+14) 2
wg T wp tg 7 ) (B-16)
where
2 3 EI 2 m(d + ¢ QZ
. . md+0a -
wp = 3 and o~ = £l o (B-17)
m/
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If the mass of the arm of the hinged boom is accounted for, it was shown
that

\ 2 J 2 2] 4,
MC:m(d+£) m[(»sR-Q]e (B-18)

and the spinning vibration frequency is

2 2 d+£§22
w = w + —_

s B [} R (B-19)

m
. B [3d + 2¢
m' = m + 3 [Z(d - fTJ (B-20)
m_/3
R = m—z_n_xi__ (B-21)

Equation (B-11) takes a different form due to the distributed mass of the boom

arms as follows;

¢
%_H - [2m£(d+£) +2c/ (d+x)xdee' + [2m(d+ﬂ)2
t O
g 2 ¢ 2
+2c/ (d + x) dx]mz + [Zmﬂ (d + 0 + Zc/ (d +x)xdx]§2 o'
O O
2 t 2
-[Zm d + 0° + 2¢c f (d+x)° dx |00, = -2 M_ (B-22)
(@]

The integrals involved evaluate to

4 m
c f (d +x) x dx :—3—B 0d + 1) [%‘(id*—ff)] ~ (B-23)
O
and
? m Z]
c [ (d+x)° dx = —3—B @+ g% |34d + ”; ! (B-24)
5 (d + 1) J
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The last expression is the moment of inertia of the boom arm about an axis

through the center of the station (not including the tip mass).

The first and third bracketed expressions on the right-hand side of Equa-
tion (B-22) then become

20(d +0) {m +mg/3 [-g%%] = 20(d + 0 m' ' (B-25)

the second and fourth expressions become

m 2
20 = 2m (A4 0% + 2—2 (d+ g2 |24+ + ¢ (B-26)
B 3 (d+ﬂ)2

This last is the total moment of inertia of the boom (arm and tip mass) about
an axis through the center of the station and would directly add to the total
spin inertia if the booms were rigidly connected, Equation (B-22) can then

be written

.. . 2
] 1 1 —
22(d + ) m' 6' + ZIB W, + 22(d+0)m!'Q” 6" - ZIBQ(.o1 = -ZMC (B-27)
with definitions
I, -1 1., -1
A - 1I 3 B - 3I 2
2 1
and
d + 0’ 2 2
c' = 2m' (Rw - Q) (B-28)
I2 s

the equations of motion of a rotating space station with hinged massy booms

are

Gy + BRw, = 0 (B-29)
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o - B-30
Sy + AW - g8 =0 (B-30)
I 1_©
. 2 B : B
s — - _— = B-
' + Rog 0+ oy m' “2 ~ a+ oot ©1 ~ 9 (B-31)

The equations of motion of the system with cantilever booms with

¢ = zmﬂf’—ﬂ—)E ((.osz - %) (B-32)
2
are
Gy + Bw, = 0 | (B-33)
w2+Ale-diﬂc6:O (B-34)
0 - wsze P . ¢ By - i;—f-szwl -0 (B-35)

The simplest way to arrive at the characteristic equation for these systems

is to differentiate the last two and use the first to eliminate d)l. It should
perhaps be noted at this point that IB/Q(d + f)m' = d+¢/¢ and Rx1 for the
dynamic model, so that the two sets of equations have nearly equal coefficients
as they stand., However to demonstrate the variations with spin rate Q further

discussion is advantageous,

Carrying out the suggested operations and inserting the associated values of

wg, the spinning natural frequency, yields for the cantilever boom system,

. 2 2mo(d + o) 2 . 6d 127 _

By - ABQw, - =1, [wB r 7 +p)e =0 (B-36)
2 6@+ . 2]|; (d +0) (d+0) 2 _

0 + |:wB + g 0 }e t 6, + =9 Bo, = 0 (B-37)
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The associated determinant is

' 2
S4 + (wsz - ABQ2 + c:)S2 + BQZ(C - Awg) = 0 (B-38)
It may be shown that for the type of spacecraft under consideration with

A < B <1 the requirement for stability is

c >Aws (B-39)
or
2 6 (d+ o2
5 Q
2m(d + 0)° S w2 Y "3 7 (B-40)
I -1 2 Qz - 2+(§g+lmz T
W T “B 57735

for a boom geometry similar to Skylab d = 0 and Equations (B-36), (B-37) and

inequality (B-40) become

2 .
.. 2 2m/ 2 1 _2 B
Wy - ABQ w5 -_I?_[wB + 39] 6 = 0 (B-41)
2 6 2 1: . 2
0 + [wB +§Q]9+w2+§2 BwZ—O (B-42)
2 w 2 + éQZ
2m/ B 5
> (B-43)
L-l3 o %4 Lo?
B 5

For the massy hinged booms the equations corresponding to Equations (B-41)

and (B-42) are

.. : 2 2m'f (d + 1) 2 d_ 2 =,

$, - ABR w, - T, (Rwp” +597) 6 (1}44)

o4 R ? + S L% e 4 __B__ + ———IB Q% By, = 0 (B-44)
“B 7 o0d + Om' “2 7 id + Hm’ W2 7 -
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The corresponding characteristic equation is

I
s*+ (Ro ? - aBQ® ¢ — 25— cns® 4 BR?
(d +4) m'
g 2
=>—C'- ARw 7| = 0 (B-45)
(d +0)“m' S
The condition for gyroscopic stability is
21 Rw 2 RwBZ +i‘g;£92
B > 53 2 d.2 (B-46)
I - 13 Rw_ - & Rug +7Q~

Comparing stability criteria Equations (B-43) and B-46), it was noted that
IB is the total moment of inertia of the hinged massy boom about an axis
normal to the spin axis and therefore is directly analagous to 21rr1€2 of

Equation (B-43).

If we choose
W' = RwBZ hinged - wB[‘ cantilever (B-47)

and

d+1
{

1l

=l

_ _s (B-48)

Ul
1]
[a]
+

the stability conditions of the hinged boom model will be identical to those of

a cantilever boom vehicle at all spin speeds.

The equations of motion of the massy hinged boom system Equations (B-44)
and (B-45) would differ from Equations (B-41) and (B-42) of the cantilever
system by the presence of the coefficients IB/Q(d + {)m', in the last two terms

of Equation (B-45) and a difference of the coefficient of the last term of
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Equation (B-44). This condition can be corrected by making a linear trans-

formation of the boom angle variable
6 = —-——F— 0 (B-49)
in Equations (B-44 and (B-45). Each term of Equation (B-45) will then contain

the factor IB/IZ(d + ¢)m' as part of its coefficient, and can be cancelled out.

" Equations (B-44) and (B-45) then become

| I
. 2 B[, 2  d2
wZ-ABQ wZ—Z——IZ w!' s +£Q 6 | (B-50)
2 d +¢ 2

1 = -
R le+w2+BQ 9y =0 (B-51)

Thus with the appropriate choice of parameters, the coefficients of Equa-

tions (B-50) and {B-51) can be made identical to those of Equations (B-41) and
(B-42). The stability criteria are unchanged by the transformation. The canti-
lever boom angle 0 is obtained from the model boom angle 8' by means of

relation (B-49).

The air bearing model parameters actually used result in the following

d = 0.1397 m (0. 4583 ft), £ = 0.6604 m (2. 1667 ft)

m = 3.634 kg (0.2491 Slugs), mp = 0.9819 kg (0. 0673 Slugs)-

m +mB/3 = 3.9617 kg (0. 2715 Slugs)

m' = 3.9889 kg (0. 2734 Slugs)

m +mB/3
R - —B " _ 5. 9932
m
2 2
I, = 2.5785 kg m® (1. 9023 Slug ft°)
I
B 24 + m'
2+ Hm' = 1,223 I = 0.8177

B
d +¢ = 1,2115
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Appendix C
SOLUTION TO EQUATIONS

The equations of free motion of the hinged boom model including the boom

arm mass are;

w, + BQwZ = 0 (C-1)
. 2m' ¢ (d + 2
o+ AQe, -2 @0 g2 o2y - g (C-2)
2 1 I2 s
.. ' I I .
6 + Rw’ 6 + —= & - B Qw = 0 (C-3)
m'd + 0) m' ¢d+2)
where
A_11'13B_I3’12 T - 3 Y- B
B I2 ’ B I ’ - 3 2(d + 2)
1
m + mB ,
B 3 2 2 d+ ¢ Q-
R = ) s ws = o.)B + 7 R (C-4)
m
To obtain the equations for the cantilever beam booms substitute;
d+ ¢ IB ' 2 : 2
; for ) , m for m , and w cantilever for Rws
: m ¢{(d + ¢)
where
2 . L 2 ,6d+0 2
W cantilever = wg + 5 7 Q (C-5)
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Some additional definitions are convenient.

Let

T -1 ° M (C-6)

2
B Y ==
I L \t-T32) =5 (C-7)

which may be called the stability factor, since the types of space stations
under consideration (I1 > 13 > IZ)’ the requirement for gyroscopic stability
is SF > 1.

Equation (C-2) may be solved for w, and substituted in Equation (C-3) to
eliminate Wy, and Equation (C-2) may be differentiated and W, substituted

from Equation (C-1) to eliminate w, from Equation (C-2). The resulting

1
equations are;

IZIM

'e'+Rw2(1-§}::)e+
s 2m' o(d + 0)

(1 +A) d’z = 0 (C-8)

f
.. 4 .
S Yzw _ 2m ((d + ¢) (sz _ QZ)G -0 (C-9)
2 2 12 s
where
v? - aBo’ (C-10)
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Taking the Laplace transform of Equations (C-8) and (C-9) we obtain in matrix

form;
I, IM (1+A 1 [
Ip IM (1+4) s + Ro’ (1 - SF) w, (S)
2m'{ (d+1) S
‘ ' 2 2
LSZ—YZ _Zml—f(d”) (Rw” - @) 5|0 (5
2 S Jd b .
: Ip IM (1+A)
S 9o * 60 t 3 m'f (d+4) “20
(C-11)
. 2m'e (d+0) o 2 2
_S CP + Wy = —————-—IZ (RJoS Q) 60 ]

The terms on the right with zero subscript are initial conditions. The deter-

minate A of these equations is

-A = S4+ S2 [Rw§(1+S_FA)-Y2]+ Rwi(ﬁ‘—l)yzz 0 (C-12)
. . L 2 .
Equation (C-12) is quadratic in S™ and can be written
-A = (s3 + az)'(s2 + bz) (C-13)
2 2 .
where a and b~ are given by
a’ = % [sz (1+ SFA) - YZ]- i-l- [sz (1+ SFA) - YZ]Z
s . 4 s
2 -, 2]+
+ Rws (1 -SF)y |2 (C-14)

b% = 1/2 [Roxz (1 + SFA) - y?‘] + | % [Rwi (1 + SFA) - Yz]z

2

rof —

+Rw2(1-§f‘)y

3 (C-15)

From Equation (C-14) it may be noted that in order that a2 > 0 and real the

requirement is for SF > 1, as noted earlier,
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The solution to Equation (C-11) is

6, (5) . 2m'ad + DRSS - 2%) - |s% + ReZ(1 - 5F)
1 "2
A SI.IM(1 + A)
B(s) —(s2 - YZ) 2
2m'i(d + £)
. 121_1\/1—(1 + A)
Seo * 60 * 2m'i(d + 1) “20
5 > (C-16)
. 2mii{d + ) (R - 27) 6
Sw, +w, - ———— s o
20 20 I
2
With initial conditions 60 = 60 = Wy T 0 Wy, = wl(t = 0) (C-17)
From Equation (C-2), 6)20 = -AleO. Inserting in Equation (C-16) yields
ls? s sz(l - EF)] lsz + sz(l - sF) AQw,
w,(8) = 2 —lo, = 2 = (C-18)
2 _(SZ +a2)(52 +b2) 20 —(SZ L aZ)(SZ +b2)
i sd)zo IZIM(I +A)
0s) = ———=—"%5—
{(s"+a")s 4+ b7)2m'ed + 1)
ZIb(l + A2 Swlo
= 2 2.2 .2 (C-19)
2m'(d + 2) (s  +a Ms~  +b7)
With the aid of the transform pair,
y-l - 2s ; - _ cos atz— cozs bt ’ (C-20)
(s  +a)(s” +b7) b~ - a
the time solution to Equation (C-19) is,
Io(1 + A)Qow
ot) = —= 12— (cos at - cos bt) (C-21)

m'e(d + 0)(b% - a%)
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Equation (C-18) may be written

[s?+ Rw 2 (1 -3F)] AB? w
s 10
w,(s) = > 5% 5 . (C-22)
_(s% +a%) (s +b%) BQ
Since AB2Z = yZ and a’b’ = Rwsz (1 - SF)Y?2 (C-23)

Equation (C-22) becomes

(5) (S2 YZ + aZbZ) @0 (C_24)
w S) = . -
2 - (5% +a%) (5° +1b%)  BO

with transform pairs

2 . .
y“l . 2S _ 5 _ - asin a; + bzsm bt (C-25)
i (S“ + a%) (S° + b°) b2 - a
and
1 1 1 1
P! = (— sin at - = sin bt) (C-26)
(S% + a%)(s? + b2) b - al b
the time solution to Equation (C-24) is
“10 2 .2 2 2
wz(t) = > > [a(y - b”) sinat + b(a”™ - y") sinbt] (C-27)
BQ (b™ - a™)
With initial conditions 60 = 80 =W)g T 0 Wy = wz(t = o)
We obtain from Equation (C-16)
2 == 2 2 -
SRw “ SF(1+A)w S|s“ + Rw _“(1 - SF)|w.
] 20 s 20
wy(s) = z 2.2 2. 2 2. .2 .2 (C-28)
(5% + a%) (8% + b°) (5% + a%) (S° + b°)
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S|Rw 2 (1 + SFA)] w50 + S3w20
s
‘”2(5) = > > 5 > (C-29)
(S" +a ) (S +b)

since az + b2 = Rwsz (1 + SFA) - YZ the time solution is

wz(t) e (b2 + YZ) cos at - (a2 + \{2) cos bt, (C-30)

The solution for initial conditions on both Wy and Wy is obtained by adding

Equations (C-27) and (C-30) (superposition).

The transform of the boom angle 6 to an initial condition on ws only is given

by Equation (A-16) as,

2
Ig (1 +4) BQ w,,

6(s) = - (C-31)
m'ed + 1) (S% + a%) (8% + b%)

with time solution,

IB(I + A) BQZ W50
ety = - > > (cos at - cos bt) (C-32)

m'éd + ¢) (b” - a’)

Equation (C-32) may be combined with Equation (C-21) to give the response to
initial conditions on both @y and W
IB(l + A)Q

o(t) = (w - BQw,,) (cos at - cos bt) (C-33)
m'o(d+0) B> - a%) 10 20

From Equation (C-1)

o 1) = o, - BQ[) w, (1) dT (C-34)
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Inserting Equations (C-27) and (C-30) in Equation (C-34) and performing the

indicated operations yields

wl(t) - b—ZLZ_ [(YZ - bz) cos at + (a2 - YZ) cos bt]
- a
wan BQ 2 2 2 2 ‘
. ;0 . [(b ;ry ) sin at - (a__;_y_> sin bt] (C-35)
b™ - a~
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